The freeform technology has been employed since the year 2000 for the precisely, flexibly and individually calculated manipulation of optical surfaces in eyeglass manufacturing. The ZEISS patent has caught on predominantly amongst the basic types - with a combination of prefabricated progression of the basic curve on the front side, spheric or aspheric back side with toric or atoric form. A spheric front side as the basic curve and a freeform surface on the back side. The advantages can be found in the manufacturing - glass is only processed on one side, which results in shorter process times and a lower error rate. The advantage, however, is predominantly in the vision correction and esthetic of the eyeglasses. The optical quality is optimized, the symmetrical front side is esthetically pleasing.
New parameters were taken into account, the tolerability was significantly improved. Next to technological possibilities, stylistic trend requirements also play an important role. At Gradal Short I (2003), the progression zone is shortened by 20 percent compared to Gradal Individual and/or by 40 percent compared to conventional varifocal lenses. The optimal solution for the back then frequently requested frames with a mere 16 millimeter fitting height.
The centring data for fitting to a personal visual profile and the eye are the position of the lenses within the frame and in relation to the physiognomy of the eye as well as the precise consideration of distances of objects for the close-up and long distance zone. Video supported centring data collection has already been introduced in 1992. Today digital 3D centring data collection is possible, which provides all necessary data for an individualized adjustment of eyeglass frames.
These advances are combined with the eyeglass customization through innovation of objective and subjective refraction. Measurement steps of 0.25 diopters are set for the subjective refraction depending on the process. The determination of the starting point of visual acuity determination depends very much on the experience of the optometrist and the consumer's the form of the day. The objective method of measurement solves this problem. The i.Profiler by ZEISS for example provides most of all a variety of individual data. The wavefront technology considers up to 1.500 measurement points per eye. The customization of eyeglasses to visual fields of a higher order, the measurement for differing pupil widths to simulate the vision during dawn/dusk and night result in significantly more complex, but also optically optimized eyeglasses that offer a better tolerance and can be adapted much more precisely to personal preferences and needs and visual profiles. Since introduction of the horizontal symmetry in 1983 and the individual varifocal lenses in 2000, a new step in the development has been reached.
Carl Zeiß and Ernst Abbe were only able to perfect their revolutionary optical instruments, once Otto Schott developed optical lenses with characteristics that could be influenced directly. This basic principle also defines the eyeglass industry. New plastic materials with improved material characteristics have an important role and deserve their own chapter. As an example should suffice here the implementation of plastic materials with a refractive index of 1.74.